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This paper deals with the synchronization of fractional-order chaotic systems with unknown parameters and unknown
disturbances. An adaptive control scheme combined with fractional-order update laws is proposed. The asymptotic stability
of the error system is proved in the sense of generalized Mittag–Leffler stability. The two fractional-order chaotic systems
can be synchronized in the presence of model uncertainties and additive disturbances. Finally these new developments are
illustrated in examples and numerical simulations are provided to demonstrate the effectiveness of the proposed control
scheme.
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1. Introduction
Fractional-order systems have become an active research

field in recent years. Since the fractional calculus enables
us to describe real world physical phenomena more accu-
rately than the classical integer calculus, the research on the
dynamics, control, and applications of fractional-order sys-
tems deserves considerable attention.[1,2] The controls of lin-
ear and nonlinear systems have been reported in a lot of lit-
erature related to the system stability analysis,[3–6] controller
design,[7,8] system simulation, etc. Among many physical and
biological fractional-order systems, it has been confirmed the-
oretically and practically that the chaotic behaviors exist in
the fractional-order systems, such as fractional-order Chua’s
system,[9] fractional-order financial system,[10] and fractional-
order unified chaotic system,[11] etc.

Synchronization of fractional-order chaotic systems is of
significance for real world physical applications. Fractional-
order chaotic systems have been found in physics, engi-
neering, finance, and sociology. The control and synchro-
nization of fractional-order chaotic systems have been used
successfully in many real applications, such as permanent
magnet synchronous motor,[12] circuit design,[13] and secret
communication.[14] For classical chaotic system synchroniza-
tion, much research work has been done in some areas, such
as linear control,[15] nonlinear state feedback control, robust
control,[16,17] and sliding mode control.[18–20] In recent years,
control research on the synchronization of fractional-order
chaotic systems were extensively investigated.[21–25] However,
the integer-order stability analysis tools are inapplicable for
fractional-order chaotic systems in the sense of Lyapunov sta-
bility.

For fractional-order nonlinear stability analysis, the gen-
eralized Mittag–Leffler stability[26] is a powerful tool, in terms
of fractional Lyapunov function, to prove controlled system
stability. Although an appropriate candidate Lyapunov func-
tion is often hard to obtain, some recent work[27,28] provides
suitable fractional-order inequalities and analysis techniques
to facilitate the process of controller design.

To our best knowledge, the work on the synchronization
of fractional-order chaotic systems with uncertain parameters,
model uncertainty or additive disturbance, is not so much
in the sense of the generalized Mittag–Leffler stability. In
practical applications, it is inevitable to encounter the situa-
tion where systems are often with various uncertainties,[29,30]

which will be considered in this paper.
In our contributions, we use the generalized Mittag–

Leffler stability to deal with the synchronization of fractional-
order chaotic systems with uncertain parameters and uncertain
disturbances. To our best knowledge, most of the studies are
based on traditional Lyapunov stability, however we employ
the generalized Mittag–Leffler stability, which implies Lya-
punov asymptotic stability, to design the controller, by con-
structing a fractional Lyapunov function. The uncertainties
are often caused by model uncertainty and additive noise, and
these uncertainties usually can be dealt with under certain con-
ditions that the uncertainties are assumed to be bounded ei-
ther by a known or an unknown constant. For the case that
uncertainties are bounded by a known constant, a robust or
adaptive control proposed in the cited references in this paper
can be employed to deal with this situation. Meanwhile, for
the case of an unknown constant, limited work has addressed
this issue before and we propose fractional-order update laws

∗Project supported by the National Natural Science Foundation of China (Grant No. 61171034) and the Zhejiang Provincial Natural Science Foundation of
China (Grant No. R1110443).

†Corresponding author. E-mail: qiao@zju.edu.cn
© 2015 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

060508-1

http://dx.doi.org/10.1088/1674-1056/24/6/060508
mailto:qiao@zju.edu.cn
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 24, No. 6 (2015) 060508

for the unknown parameters and unknown upper bounds of
the uncertainties respectively. An adaptive control combined
with fractional-order state feedback and uncertainty estimates
is proposed to synchronize two fractional-order chaotic sys-
tems. Although the proposed control law consists of multi-
controllers, it presents a new insight into this issue theoreti-
cally and it holds true for most of the chaotic systems, even the
synchronization between two different chaotic systems as will
be discussed later in Corollary 2. Finally, illustrative exam-
ples and simulations are provided to demonstrate our control
design.

The rest of this paper is organized as follows. In Sec-
tion 2, fractional calculus properties and fractional-order sys-
tem stability criteria are introduced. In Section 3, the adaptive
control design and estimated update laws are presented. In
Section 4, illustrative examples and numerical simulation re-
sults are provided. Finally, some conclusions are drawn from
the present studies in Section 5.

2. Problem formulation and preliminaries
Definition 1 Let f : [a,b]→ R and f ∈ L1[a,b]. The Ca-

puto fractional derivative of order α is defined as

Dα f (t) =
1

Γ(n−α)

∫ t

0

f (n)(τ)
(t− τ)α−n+1 dτ, (1)

where α ∈ R+ and Γ(·) is the Gamma function. The or-
der of the chaotic system is 0 < α < 1. In this paper we
employ D for representing the classical integer differential
D1 f (t) = d f (t)/dt.

Furthermore, there are some properties for the fractional
calculus.[10]

(i) For α = n, where n is an integer, the fractional-order
derivative coincides with the integer order derivative. Particu-
larly, when α = 0, it appears as the identity operator, i.e.,

Dα D−α f (t) = D0 f (t) = f (t). (2)

(ii) The fractional operator is a linear operator

Dα [a f (t)+bg(t)] = aDα f (t)+bDα g(t), (3)

where a and b are real constants.
Theorem 1[26] Let x(t) = 0 be the equilibrium point of

the fractional-order system Dα x = f (x, t), x ∈ D ⊂ Rn, where
D contains the origin. Assume that a fractional Lyapunov
function V (x, t) : Rn× [0,∞)→ R is a continuous differential
function and locally Lipschitz with respect to x, and there ex-
ists class-K function γi such that

γ1(‖x‖)≤V (x, t)≤ γ2(‖x‖),
DαV (x, t)≤−γ3(‖x‖),

(4)

then x(t) = 0 is asymptotically stable. Moreover, if the condi-
tions hold globally on D=Rn, then x(t) = 0 is globally asymp-
totically stable.

The above theorem deals with system stability in the
sense of fractional order, and is also called the general-
ized Mittag–Leffler stability theorem. It should be noted
that Mittag–Leffler stability implies Lyapunov asymptotic
stability.[26]

Theorem 2[5] Let fractional-order linear time-invariant
(LTI) system Dα x(t) = Ax(t), where A ∈ Rn×n and x ∈ Rn, if
the following condition is satisfied:

|arg(eig(A))|> α
π

2
, (5)

then the LTI system is asymptotically stable.
Since the fractional Lyapunov function described in The-

orem 1 must work within the framework of fractional-order
inequalities, here we present some powerful inequalities con-
cerning the fractional-order systems.

Lemma 1[27] Let x(t) ∈ R be a continuous and derivable
function, then, for any time t ≥ 0, the following inequality will
always hold:

1
2

Dα x2(t)≤ x(t)Dα x(t), (6)

where α ∈ (0,1).
Lemma 2[28] Let x(t) = [x1(t), . . . ,xn(t)] ∈ Rn be a real-

valued continuous and derivable vector function, then, for any
time t ≥ 0, the following inequality will always hold:

1
2

Dα x(t)TPx(t)≤ x(t)TPDα x(t), (7)

where α ∈ (0,1) and P = diag[p1, . . . , pn]> 0.
Remark 1 The above two lemmas are conducive to

constructing fractional Lyapunov candidate function through
transforming the well-used quadratic function in Lyapunov di-
rect method into system fractional differential equations by in-
equality.

3. Synchronization of fractional-order uncer-
tain chaotic systems
Consider a pair of fractional-order uncertain chaotic sys-

tems. The drive system can be described by
Dα x1(t) = f1(x)−ϕT

1 (x)θ1,

Dα x2(t) = f2(x)−ϕT
2 (x)θ2,

...

Dα xn(t) = fn(x)−ϕT
n (x)θn.

(8)

The response system with unknown uncertainties can be
described by

Dα y1(t) = f1(y)+ϕT
1 (y)θ̂1 +∆ f1(y, t)+d1(t)+u1,

Dα y2(t) = f2(y)+ϕT
2 (y)θ̂2 +∆ f2(y, t)+d2(t)+u2,

...

Dα yn(t) = fn(y)+ϕT
n (y)θ̂n +∆ fn(y, t)+dn(t)+un,

(9)
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where the system state x ∈ Rn, y ∈ Rn, and α ∈ (0,1) is
the order of the fractional derivative; fi and ϕT

i (i = 1, . . . ,n)
are continuous nonlinear system vector functions; θi ∈ Rmi

(i = 1, . . . ,n) are the unknown parameters in the drive sys-
tem; θ̂i ∈ Rmi (i = 1, . . . ,n) are the estimates of θi in the drive
system; ∆ fi(y, t) (i = 1, . . . ,n) are unknown model uncertainty
terms; di(t) (i = 1, . . . ,n) are external disturbances of the sys-
tem; ui (i = 1, . . . ,n) are system controllers.

The system error is defined as e = y− x, and systems (8)
and (9) are said to be synchronized under arbitrary initial con-
ditions x(0) and y(0) if

lim
t→∞
||e(t)||= ||y(t)− x(t)||= 0. (10)

The error system can be represented by the following
equations:

Dα e1(t) = fe1(e)+ϕT
1 (x)θ1 +∆ fe1 +u1,

Dα e2(t) = fe2(e)+ϕT
2 (x)θ2 +∆ fe2 +u2,

...

Dα en(t) = fen(e)+ϕT
n (x)θn +∆ fen +un,

(11)

where fei(e) = fi(y) − fi(x) + ϕT
i (y)θ̂i (i = 1, . . . ,n) and

∆ fei = ∆ fi(y, t)+di(t).
Assumption 1 The unknown model uncertain terms

∆ fi(y, t) and external disturbances di(t) are all bounded by un-
known positive constants, which implies

|∆ fei|= |∆ fi(y, t)+di(t)| ≤ δi, (12)

where δi (i = 1, . . . ,n) are unknown positive constants.
Remark 2 The term ∆ fei is introduced for simplifying

the system expression, and one can also consider ∆ fi(y, t) and
di(t) directly instead of ∆ fei, which makes no difference in the
error system asymptotic stability. Furthermore, it is also avail-
able to consider uncertain terms and external disturbances in
the drive system (8), and this consideration only leads to the
change of ∆ fei. It can be seen that our control method is valid
under the Assumption 1, thus it will also work if the uncertain-
ties are considered in both drive system and response system.

Theorem 3 The error system (11) with uncertainties can
be globally stabilized asymptotically by the adaptive feedback
control

ui =−[ fei +ϕ
T
i (x)θ̂i +λiei + si +mi + kisgn(si)], (13)

where si = ei +λiD−α ei,

mi =
siδ̂

2
i

|si| δ̂i + s2
i

;

λi and ki are constants, update laws

Dα
θ̂i = Γiϕi(x)si, (14)

and

Dα
δ̂i = ri |si| , (15)

with θ̂i being the estimate of the unknown parameter θi, and δ̂i

being the estimate of the unknown upper bound δi in Assump-
tion 1; Γi = diag[pi1, . . . , pim] > 0 and ri > 0 are the gains of
the update laws respectively.

Proof The procedure of the proof consists of two steps.
Step 1 By introducing si = ei+λiD−α ei for the i-th equa-

tion in error system (11), and using the Caputo derivative, we
obtain

Dα si = Dα ei +λiei. (16)

Choosing Lyapunov function for the i-th equation

Vi(e, θ̃i, δ̃i) =
1
2

s2
i +

1
2

θ̃
T
i Γ
−1
i θ̃i +

1
2ri

δ̃
2
i , (17)

where θ̃i = θi − θ̂i is the parameter estimate error and δ̃i =

δi − δ̂i is the upper bound estimate error, using the Caputo
derivative, and according to Lemma 1 and Lemma 2 we have

DαVi ≤ siDα si + θ̃
T
i Γ
−1
i Dα

θ̃i +
1
ri

δ̃iDα
δ̃i. (18)

By Eq. (16), we have

DαVi ≤ si( fei +ϕ
T
i (x)θi +∆ fei +ui +λiei)

− θ̃
T
i Γ
−1
i Dα

θ̂i−
1
ri

δ̃iDα
δ̂i

= si( fei +ϕ
T
i (x)θ̂i +ui +λiei)+ si∆ fei

+ θ̃
T
i (ϕ

T
i (x)si−Γ

−1
i Dα

θ̂i)−
1
ri

δ̃iDα
δ̂i. (19)

Substitute control ui and note that

si∆ fei ≤ |si∆ fei| ≤ |si| |∆ fei| ≤ |si|δi = |si|(δ̃i + δ̂i),

we have

DαVi ≤ −sikisgn(si)+ θ̃
T
i (φ

T
i (x)si−Γ

−1
i Dα

θ̂i)

− δ̃i(|si|−
1
ri

Dα
δ̂i)+ |si| δ̂i− s2

i − simi. (20)

By use of update laws (14) and (15) and noting that
|si| δ̂i− s2

i − simi ≤ 0, we have

DαVi ≤−sikisgn(si) =−ki |si| . (21)

Step 2 Choose Lyapunov function V =
n
∑

i=1
Vi for the

whole error system (11), then we have

DαV (e, θ̃1, . . . , θ̃n, δ̃1, . . . , , δ̃n)≤−
n

∑
i=1

ki |si|. (22)

If DαV = 0, which implies si = 0, thus the error system
becomes

Dα ei(t) =−λiei. (23)
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By choosing λi appropriately to satisfy Theorem 2, the
error system achieves asymptotic stability.

If DαV < 0, and since V (e, θ̃1, . . . , θ̃n, δ̃1, . . . , , δ̃n) is
positive-definite, based on the relationship between class-
K functions and positive-definite functions, there exists a
class-K function γ such that DαV ≤ −γ(‖η‖), where η =

[eT, θ̃ T
1 , . . . , θ̃

T
n , δ̃1, . . . , , δ̃n]

T. According to Theorem 1, the er-
ror system is asymptotically stable. This completes the proof.

Corollary 1 Theorem 3 makes it also possible to design
a simpler feedback control in the way of replacing si by ei. In
this case, the items kisgn(si) and mi in ui become kiei and

mi =
eiδ̂

2
i

|ei| δ̂i + kie2
i

respectively. Follow the two steps in the proof, we haveVi =
1
2

e2
i +

1
2

θ̃ T
i Γ
−1
i θ̃i +

1
2ri

δ̃ 2
i ,

DαVi ≤−kie2
i ,

(24)

and 
V (e, θ̃1, . . . , θ̃n, δ̃1, . . . , , δ̃n) =

n
∑

i=1
Vi,

DαV (e, θ̃1, . . . , θ̃n, δ̃1, . . . , δ̃n)≤−
n
∑

i=1
kie2

i .
(25)

If DαV = 0, this implies ei = 0; otherwise DαV < 0, thus the
error system is asymptotically stable according to Theorem 1.

Corollary 2 It is also available to achieve the syn-
chronization of two different fractional-order chaotic systems,
based on Theorem 3. In this case, the response system (9)
becomes Dα yi(t) = gi(y)+∆ fi(y, t)+ di(t)+ ui and fei(e) =
gi(y)− fi(x) in the error system (11) correspondingly. Follow-
ing the procedure of the proof of Theorem 3, we can design an
adaptive control for the synchronization between two different
chaotic systems, which case will be illustrated in Example 3
in the simulations.

4. Illustrative examples and simulations
In this section, we will give numerical simulations to il-

lustrate the effectiveness of the proposed adaptive control.
Example 1 Consider the fractional-order Van der Pol os-

cillator

Dα x1(t) = x2(t),

Dα x2(t) =−x1(t)− ε(x2
1(t)−1)x2(t), (26)

where α ∈ (0,1) and ε is the system parameter. The response
system within unknown ε is expressed as

Dα y1(t) = y2(t)+∆ f1(y, t)+d1(t)+u1,

Dα y2(t) = −y1(t)− ε̂(y2
1(t)−1)y2(t)

+∆ f2(y, t)+d2(t)+u2, (27)

the adaptive control is

u1 = −[y2− x2 +λ1(y1− x1)+ s1 +m1 + k1sgn(s1)],

u2 = −[−y1− ε̂(y2
1−1)y2 + ε̂(x2

1−1)x2 + x1

+λ2(y2− x2)+ s2 +m2 + k2sgn(s2)], (28)

and the update laws are

Dα
ε̂ = p(x2

1−1)x2s2,

Dα
δ̂i = ri |si| . (29)

Figures 1 and 2 show the convergence of the Van der Pol
error system and the system synchronization, with initial con-
ditions x(0) = [2,−3]>, y(0) = [5,4]>, ε̂(0) = 2; gains of up-
date law p = 1, ri = 2, model uncertainties ∆ fi = 0.5cos(πt),
external disturbances di(t) = 0.1sin(5t); control parameters
ki = 2 and λi = 1; system order α = 0.96.
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Fig. 1. (color online) Convergence of Van der Pol error system.
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Fig. 2. (color online) Synchronization of Van der Pol systems.

Example 2 Consider the fractional-order Genesio–Tesi
system

Dα x1(t) = x2(t),

Dα x2(t) = x3(t),

Dα x3(t) =−β1x1(t)−β2x2(t)−β3x3(t)+β4x2
1(t), (30)

where α ∈ (0,1) and βi are the system parameters. The re-
sponse system with unknown β1 and β2 is expressed as

Dα y1(t) = y2(t)+∆ f1(y, t)+d1(t)+u1,
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Dα y2(t) = y3(t)+∆ f2(y, t)+d2(t)+u2,

Dα y2(t) = −β̂1y1(t)− β̂2y2(t)−β3y3(t)

+β4y2
1(t)+∆ f3(y, t)+d3(t)+u3, (31)

the adaptive control is

u1 = −[y2− x2 +λ1(y1− x1)+ s1 +m1 + k1sgn(s1)],

u2 = −[y3− x3 +λ2(y2− x2)+ s2 +m2 + k2sgn(s2)],

u3 = −[−β̂1y1(t)− β̂2y2(t)−β3y3(t)+β4y2
1(t)

+ β̂1x1(t)+ β̂2x2(t)+β3x3(t)−β4x2
1(t)

+λ3(y3− x3)+ s3 +m3 + k3sgn(s3)], (32)

and the update laws are

Dα
β̂i = pixisi,

Dα
δ̂i = ri |si| . (33)

Figures 3 and 4 show the convergence of the Genesio–
Tesi error system and the system synchronization, with ini-
tial conditions x(0) = [0.1,0.5,−0.2]>, y(0) = [−1,−2,1]>,
and β̂i(0) = 2; gains of update law pi = 2, ri = 3; model
uncertainties ∆ fi = 0.4sin(πt); external disturbances di(t) =
0.2cos(5t); control parameters ki = 1 and λi = 3; system or-
der α = 0.98.
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Fig. 3. (color online) Convergence of Genesio–Tesi error system.

Example 3 Consider the synchronization of two different
chaotic systems as discussed in Corollary 2. The drive system
is the Lorenz system

Dα x1(t) = a(x2(t)− x1(t)),

Dα x2(t) = x1(t)(b− x3(t))− x2(t),

Dα x3(t) = x1(t)x2(t)− cx3(t), (34)

where α ∈ (0,1); a and c are the unknown parameters. The
response system is chosen to be the Lü system with uncertain-
ties

Dα y1(t) = τ(y2(t)− y2(t))+∆ f1(y, t)+d1(t)+u1,

Dα y2(t) =−y1(t)y3(t)+ρy2(t)+∆ f2(y, t)+d2(t)+u2,

Dα y2(t) = y1(t)y2(t)−βy3(t)+∆ f3(y, t)+d3(t)+u3, (35)

where α ∈ (0,1); τ , ρ , and β are the system parameters. The
adaptive control is

u1 = −[τ(y2− y1)+(â−a)(x2(t)− x1(t))

+λ1(y1− x1)+ s1 +m1 + k1sgn(s1)],

u2 = −[−y1(t)y3(t)+ρy2(t)− x1(t)(b− x3(t))− x2(t)

+λ2(y2− x2)+ s2 +m2 + k2sgn(s2)],

u3 = −[y1(t)y2(t)−βy3(t)− x1(t)x2(t)+(c− ĉ)x3(t)

+λ3(y3− x3)+ s3 +m3 + k3sgn(s3)], (36)

and the update laws are

Dα â = p1(x1− x2)s1, Dα ĉ = p3x3s3,

Dα
δ̂i = ri |si| . (37)
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Fig. 4. (color online) Synchronization of Genesio–Tesi systems.

Figures 5 and 6 show the convergence of the errors
and the synchronization between two different chaotic sys-
tems, with initial conditions x(0) = [0.1,0.1,0.1]>, y(0) =
[6,−6,5]>, β = 20, ρ = 3, τ = 36, b= 1, ĉ(0) = 3, and â(0) =
9; gains of update law pi = 6, ri = 4; model uncertainties
∆ fi = 0.2sin(πt); external disturbances di(t) = 0.1cos(8t);
control parameters ki = 3 and λi = 3; system order α = 0.98.
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Fig. 5. (color online) Convergence of errors between Lorenz and Lü
systems.
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Fig. 6. (color online) Synchronization between Lorenz and Lü systems.

From Fig. 1 to Fig. 6, it is obvious that Van der Pol os-
cillator system, Genesio–Tesi system and Lorenz system are
well synchronized by the adaptive control proposed in this pa-
per. Based on the comparison of the three examples in the
simulations, it is concluded that both the control parameters
and the gains of update laws have influences on the conver-
gence speed. When increasing the control parameters and up-
date law gains, the error systems converge faster. Furthermore,
when fractional orders of the systems increase, the error sys-
tems converge faster. The system unknown parameters, model
uncertainties, and external disturbances can be well dealt with
under arbitrary initial conditions, which confirms the effec-
tiveness of our control method.

5. Conclusions
In this paper, we consider the synchronization of two

fractional-order chaotic systems with unknown parameters
and uncertainties. Based on fractional Lyapunov function, an
adaptive control combined with the fractional-order nonlinear
state feedback and estimated update laws is proposed to stabi-
lize the fractional-order error system with asymptotic conver-

gence. The unknown parameters and unknown uncertainties
can be well dealt with under fractional order the update laws
of the proposed controller. Illustrative examples and simula-
tion results are provided to demonstrate our control scheme.
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